首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   478篇
  免费   38篇
  国内免费   115篇
测绘学   6篇
大气科学   11篇
地球物理   220篇
地质学   79篇
海洋学   261篇
综合类   38篇
自然地理   16篇
  2024年   9篇
  2023年   23篇
  2022年   24篇
  2021年   19篇
  2020年   22篇
  2019年   19篇
  2018年   28篇
  2017年   16篇
  2016年   21篇
  2015年   24篇
  2014年   28篇
  2013年   23篇
  2012年   32篇
  2011年   48篇
  2010年   23篇
  2009年   31篇
  2008年   37篇
  2007年   24篇
  2006年   28篇
  2005年   20篇
  2004年   17篇
  2003年   8篇
  2002年   14篇
  2001年   10篇
  2000年   7篇
  1999年   13篇
  1998年   13篇
  1997年   9篇
  1996年   10篇
  1995年   5篇
  1994年   4篇
  1993年   4篇
  1992年   7篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
排序方式: 共有631条查询结果,搜索用时 15 毫秒
11.
Two processes are generally explained as causes of temporal changes in the stoichiometric silicon/nitrogen (Si/N) ratios of sinking particles and of nutrient consumption in the surface water during the spring diatom bloom: (1) physiological changes of diatom under the stress of photosynthesis of diatom and (2) differences of regeneration between silicon and nitrogen. We investigated which process plays an important role in these changes using a one-dimensional ecosystem model that explicitly represents diatom and the other non-silicious phytoplankton. The model was applied to station A7 (41°30′ N, 145°30′ E) in the western North Pacific, where diatom regularly blooms in spring. Model simulations show that the Si/N ratios of the flux exported by the sinking particles at 100 m depth and of nutrient consumptions in the upper 100 m surface water have their maxima at the end of the spring diatom bloom, the values and timings of which are significantly different from each other. Analyses of the model results show that the differences of regeneration between silicon and nitrogen mainly cause the temporal changes of the Si/N ratios. On the other hand, the physiological changes of diatoms under stress can hardly cause these temporal changes, because the effect of the change in the diatom's uptake ratio of silicon to nitrogen is cancelled by that in its sinking rate.  相似文献   
12.
A model based on that of Kishi et al. (2001) has been extended to 15 compartments including silicon and carbon cycles. This model was applied to Station A7 off Hokkaido, Japan, in the Northwestern Pacific. The model successfully simulated the observations of: 1. a spring bloom of diatoms; 2. large seasonal variations of nitrate and silicate concentrations in the surface water; and 3. large inter-annual variations in chlorophyll-a. It also reproduced the observed features of the seasonal variations of carbon dioxide partial pressure (pCO2)—a peak in pCO2 in winter resulting from deep winter convection, a rapid decrease in pCO2 as a result of the spring bloom, and an almost constant pCO2 from summer through fall (when the effect of increasing temperature cancels the effect of biological production). A comparison of cases with and without silicate limitation shows that including silicate limitation in the model results in: 1. decreased production by diatoms during summer; and 2. a transition in the dominant phytoplankton species, from diatoms to other species that do not take up silicate. Both of these phenomena are observed at Station A7, and our results support the hypothesis that they are caused by silicate limitation of diatom growth. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
13.
The physico-chemical speciation of organic carbon and selected metals was measured during a coastal bloom in Ekhagen Bay, Baltic Sea, using ultrafiltration.One important objective with the study was to see if any depletion of trace metals could be measured in the directly bioavailable fraction (<1000 Da, the soluble low molecular weight fraction, LMW) during a plankton bloom. Filters with five different cut-offs were used (1 kD (1000 Da), 5 kD, 10 kD, 100 kD and 0.22 μm) in order to delineate the size distribution of colloidal organic carbon (COC) and trace metals.During the bloom in May, LMW Al, Co, Cu, Mn and Ni concentrations decreased although the colloidal and particulate concentrations were relatively high. Data show that desorption of colloidal and particulate bound trace metals to the LMW fraction was slower than the process depleting the LMW fraction.Estimates of the maximum active uptake of Cu, Ni and Mn by the phytoplankton, and the loss of non-bioactive Al from the LMW fraction, indicate that processes other than active uptake by phytoplankton must contribute to the observed depletion of trace metals in the LMW fraction. Hence, in order to estimate the bioavailable pool of trace metals for plankton during bloom conditions, these other processes must be understood and quantified.Transparent Exopolymeric Particles (TEP, reflecting sugar-rich phytoplankton exudates) increased around eight times during the plankton bloom. We hypothesize that the formation of TEP is a process that might be important for the transfer of trace metals from the LMW to the particulate fraction during the phytoplankton bloom, but the significance of TEP for this depletion in Baltic Sea surface water remains to be shown.  相似文献   
14.
Abstract. Investigations were carried out in a Posidonia oceanica meadow at Ischia (Gulf of Naples) along a depth gradient from 1 to 32 m in November 1979 and May 1981.
In these two months, different discontinuities were found at the sampling stations (1, 5, 10, 20, 30 m) at 10 m for leaf features, between 1 and 5 m for the algal community and the vagile fauna. The leaf features (length, surface, and biomass) along the transects show a delay in leaf production toward the deeper stations, below the thermocline.
The algal community shows in both seasons and in all stations a persistence of an encrusting layer, mostly represented by Corallinaceae and the brown alga Myrionema orbiculare , while at the shallowest station (1 m) the community is characterized by a more developed upright layer.
The vagile fauna of the leaf stratum, mostly represented by Polychaeta, Mollusca , and Crustacea (Peracarida and Decapoda) , shows a consistent zonation in both seasons along the transect. A superficial community at I m, characterized by a low number of species and individuals and specialized for high environmental energy levels, and a deeper community, persistent in time and more strictly related to the Posidonia oceanica meadows, are identified.
The influence of environmental factors and the importance of meadow structure for the zonation of the algal and animal communities are discussed.  相似文献   
15.
The summer distributions of planktonic microbial communities (heterotrophic and phtosynthetic bacteria, phtosynthetic and heterotrophic nanoflagellates, ciliate plankton, and microphytoplankton) were compared between inner and outer areas of Lake Sihwa, divided by an artificial breakwater, located on the western coast of Korea, in September 2003. The semienclosed, inner area was characterized by hyposaline surface water (<17 psu), and by low concentrations of dissolved oxygen (avg. 0.4 mg L1) and high concentrations of inorganic nutrients (nitrogenous nutrients >36 μM, phosphate <4 μM) in the bottom layer. Higher densities of heterotrophic bacteria and nanoflagellates also occurred in the inner area than did in the outer area, while microphytoplankton (mainly diatoms) occurred abundantly in the outer area. A tiny tintinnid ciliate, Tintinnopsis nana, bloomed into more than 106 cells L1 at the surface layer of the inner area, while its abundance was much lower (103-104 cells L1) in the outer area of the breakwater. Ciliate abundance was highly correlated with heterotrophic bacteria (r = 0.886, p < 0.001) and heterotrophic flagellates (r = 0.962, p < 0.001), indicating that rich food availability may have led to theT. nana bloom. These results suggest that the breakwater causes the eutrophic environment in artificial lakes with limited flushing of enriched water and develops into abundant bacteria, nanoflagellates, and ciliates.  相似文献   
16.
This study examined the phenology and ecological consequences of a benthic filamentous cyanobacterial bloom (Lyngbya majuscula) in Deception Bay (Moreton Bay, Queensland, Australia). Bloom initiation occurred in mid December 1999 and expanded to encompass an 8 km2 area by April 2000. Small fish and penaeid prawns (<25 cm total length) were quantitatively sampled through periods designated as before, during and after the bloom using a combination of pop-netting within mangroves and beam trawling over adjacent seagrass beds. Data on larger-bodied fish were compiled from daily fishing logs provided by local commercial fishers. Changes in dry mass of bloom material caught in nets and changes in water chemistry were also measured. Mean concentrations of ammonia-N in residual water within mangroves were several orders of magnitude higher in the affected area than in the control and dissolved oxygen was markedly lower in affected areas. Across the study area, mean density, live mass and number of species declined during the bloom, with fish assemblages using mangroves showing greater decline than assemblages using seagrasses. Response at the species level was highly variable; generally, epibenthic species showed a more sustained decline than demersals. Mean monthly fish catch was significantly lower in bloom than non-bloom years. This study has also demonstrated that throughout the bloom, the affected area continued to support a highly diverse and abundant fish and prawn assemblage, and probably maintained its function as an important nursery habitat for many species.  相似文献   
17.
刘浩  尹宝树 《海洋学报》2007,29(4):20-33
利用在本系列研究第一部分中所建立的耦合的生物物理模型,模拟了渤海浮游植物生物量和营养盐含量的年度循环特征.模拟结果显示:藻类的春季水华是由经过一冬积累在水体中的营养盐导致,而水华开始的时间在浅水区明显早于深水区,对此深水区水体层化结构的形成可能起着重要作用;另一方面,河载营养盐与悬起的沉积物所释放的营养盐是诱发夏季水华的共同原因.基于模型结果,我们还发现:渤海的浮游植物动力特性就整体而言依然受无机氮限制,但是在莱州湾,磷限制特性表现得非常明显,这主要是由于每年黄河都要携带大量的无机氮进入海水,从而导致莱州湾营养盐的氮磷比已远远超过16.  相似文献   
18.
根据2003年10月到2004年3月间日照港和邻近锚地水域及其船舶压舱水中的浮游植物调查资料,对浮游植物的群集结构和压舱水对其影响进行了初步研究。结果表明,日照港的浮游植物群集主要由温带沿岸性物种组成,以硅藻为主,还有少量的甲藻。对比船舶压舱水中浮游植物群集发现:压舱水中浮游植物群集和本地群集结构有很大的差异,有害物种在压舱水中所占的比例较高。  相似文献   
19.
We use palaeolimnological techniques to reconstruct the eutrophication history of a volcanic lake (Lake Albano, central Italy) over the past three centuries. The presence of annual varves down to the bottom of the core (c. 1700 A.D.) indicated the lack of bioturbation and likely long-term meromixis. Sedimentation rates were estimated by varve counts (calcite/diatom couplets), indicating a mean rate of 0.15 cm yr–1. The reconstruction of eutrophication was traced using past populations of algal and photosynthetic bacteria (through their fossil pigment), and geochemistry, as well as fossil remains of chironomids. Phaeophorbidea and the red carotenoid astaxanthin were used to detect past zooplankton development.The first sign of trophic change related to human activities is datedc. 1870 A.D. From that period onward a sharp increase of authigenic CaCO3, nitrogen, N:P ratio, and dinoxanthin, a characteristic carotenoid of Chrysophyceae and Dinophyceae, is observed.Chironomid analyses showed the near absence of a deep water fauna throughout the core length. The populations of chironomid larvae are restricted to oxygenated littoral zones. In fact, the few fossil remains found are primarily of littoral origin, representing shallow water midges that were transported to profundal waters. The reduction of total chironomid in the uppermost layers of the core is to be related to human land uses.  相似文献   
20.
Western tropical Indian Ocean, Arabian Sea, and the equatorial Pacific are known as regions of intense bio-chemical-physical interactions: the Arabian Sea has the largest phytoplankton bloom with seasonal signal, while the equatorial Pacific bloom is perennial with quasi-permanent upwelling. Here, we studied three dimensional ocean thermodynamics comparing recent ocean observation with ocean general circulation model (OPYC) experiment combined with remotely sensed chlorophyll pigment concentrations from the Coastal Zone Color Scanner (CZCS). Using solar radiation parameterization representing observations that a higher abundance of chlorophyll increases absorption of solar irradiance and heating rate in the upper ocean, we showed that the mixed layer thickness decreases more than they would be under clear water conditions. These changes in the model mixed layer were consistent with Joint Global Ocean Flux Study (JGOFS) observations during the 1994-1995 Arabian Sea experiment and epi-fluorescence microscopy (EFM) on samples collected during Equatorial Pacific Ocean Climate Study (EPOCS) in November, 1988. In the Arabian Sea, as the chlorophyll concentrations peak in October (3 mg/m3) after the summer plankton bloom induced by coastal upwelling, the chlorophyll induced biological heating enhanced the sea surface temperature (SST) by as much as 0.6‡C and sub-layer temperature decreases and sub-layer thickness increases. In the equatorial Pacific, modest concentrations of chlorophyll less than 0.3 mg/m3 is enough to introduce a meridional differential heating, which results in reducing the equatorial mixed layer thickness to more than 20 m. The anomalous meridional tilting of the mixed layer bottom enhances off equatorial westward geostrophic currents. Consequently, the equatorial undercurrent transports more water from west to east. We proposed that these numerical model experiments with use of satellite andin situ ocean observations are consistent under three dimensional ocean circulation theory combined with solar radiation transfer process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号